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Introduction – The Water Problem
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• Over 2 billion people lack access to safe 
drinking water1

• Over 3 billion people live in agricultural areas 
with water scarcity2

• Only 2.5% of the Earth’s water is fresh water3

• Nearly 70% of that freshwater is 
inaccessible in glaciers and ice caps

• Water scarcity is increasing over time

• New practices and technologies must be 
developed 

1. UN, Global Issues - Water
2. Food and Agriculture Organization of the United Nations. Status of Water Shortages and Scarcity in Agriculture. 2020.
3. USGS, Where is Earth’s Water?
4. Kummu, M., Guillaume, J. H. A., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, T. I. E., & Ward, P. J. (2016). Scientific Reports, 6(1), 38495. https://doi.org/10.1038/srep38495

Fig 1: Global water scarcity and shortages over time.4



Current State of Desalination
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• Reverse Osmosis (RO) accounts 
for nearly 70% of operating 
desalination plants (2019)

• Est ~16,000 plants

• Seawater accounts for 61% of 
water desalinated

• Brackish water accounts for 21%
• And increasing
• RO not as efficient for BW

1. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V., & Kang, S. mu. (2019). Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.12.076
2. Eke, J., Yusuf, A., Giwa, A., & Sodiq, A. (2020). Desalination, 495, 114633. https://doi.org/10.1016/J.DESAL.2020.114633

Fig 2A: Number of operational desalination facilities for each technology. B) Capacity of 
desalination for different feed streams.
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Background – Capacitive Deionization (CDI)
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• Surface driven process
• Electric double layer

• Symmetrical electrodes
• High surface area carbons

• Brackish water (< 2000 ppm TDS)

• Cyclical operations
• Charge – Adsorption
• Discharge – Desorption

• Things to improve on:
• Capacity
• Rate
• Lifetime

Fig 3: Schematic of CDI operation
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Background - Electrospinning
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• Electrospinning as a template for modifications
• High tunability
• High macroporosity

• Ink composition
• Wt% of solids and additives, solvent 

choice
• Electrospinning conditions

• Voltage, flow rate, tip to collector distance

• Polyacrylonitrile (PAN) used for all fibers (Fig B)
• Easily electrospun
• High carbon yield

• Carbonized at 800-1000°C under N2 (Fig C, D)

B C

Fig 4: A) Schematic of a typical electrospinning apparatus. B) Electrospun PAN fibers. C) 
Carbonized PAN fibers. D) Photo of carbonized PAN mat.
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Hierarchically Porous Nanofiber Fabrication

61. Han, B., Cheng, G., Wang, Y., & Wang, X. (2019). Chemical Engineering Journal.
2. Noked, M., Avraham, E., Soffer, A., & Aurbach, D. (2009). Journal of Physical Chemistry C. https://doi.org/10.1021/jp905987j
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• Goal: Create a pore “highway” 
to enable electrodes with
• High SSA/SAC
• High SAR 

• Mesoporosity –Sacrificial Pore 
Formers
• SiO2

• NaOH

• Microporosity - Etchants
• KOH

SiO2

Dia: 10-20 nm

PAN
Espin
Ink

Carbonized

3M NaOH

Mesoporous 
Nanofiber

KOH

800°C, N2

Hierarchically Porous 
Nanofiber

Disperse

Fig 5: Schematic of hierarchical porosity1 and example hierarchically porous carbon2.

Fig 6: Schematic of hierarchically porous nanofiber fabrication.



Imaging of Etched Nanofibers
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A B

C D

Fig 7: SEM of etched nanofibers. A, B: 40% SiO2 Etched PAN. Fig C, D: 40% SiO2, KOH etched PAN

• Fibers maintain 
structure post 
etching

• Pores are randomly 
distributed, but 
every fiber is highly 
porous

• KOH treatment 
increases surface 
roughness



Inducing Hierarchical Porosity
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Figure 8: A) BET pore size distribution of various fiber samples: Carbonized PAN (no etchants), PAN-PMMA (75:25), 
PAN etched by 40% SiO2, and PAN etched by 40% SiO2 then 10:1 KOH. A) Mesopore distribution. B) 

Adsorption/desorption isotherms.
Legend applies to both A and B.

• Silica etching effective at inducing 
mesoporosity, with the most pores at 
9nm
• PMMA pore formation creates both 

meso- and microporosity, leading to 
higher SSA, but lower pore volume 
than SiO2 etching

• > 97% of SiO2 is removed, via XRF

• KOH etching is effective at creating 
micropores and increasing pore volume
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Preliminary Work – Electrochemical Analysis
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A B

Figure 9: Cyclic voltammetry between -0.5V and 0.5V, in 1M NaCl of A) KOH and 40% SiO2 etched PAN, 40% 
SiO2 etched PAN, and non-etched carbonized PAN, 2 mv s-1 scan rate. B)KOH and 40% SiO2 etched PAN at 

varying scan rates.

• Cyclic voltammetry done 
in 1M NaCl

• Electric double layer 
increases post SiO2
removal and further upon 
KOH etching

• Higher scan rates increase 
resistance due to large 
micropore volume
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CDI Performance
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• 10:1 KOH:CF mass ratio, 40% SiO2-etched 
PAN

• 5 mins charge (1.2V), 30 mins discharge 
(0V)

• 500 ppm NaCl

• Achieves a peak SAC of 13.4 mg g-1

• Over 5x that of only-SiO2 etched 
PAN 
• (2.8 mg g-1)

• Over 6x un-etched PAN 
• (~1.9 – 2 mg g-1)

Figure 10: Constant voltage desalination using KOH/SiO2 etched nanofibers. A) Conductivity vs time cycling. B) 
First charge and discharge cycle
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B



Summary/Future Work
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• Hierarchical Porosity Generation
• SiO2 as a mesopore former
• KOH as a micropore etchant
• High SSA, high SAC materials

• Tune SiO2 wt.% in conjunction with KOH 
ratio to achieve variable 
mesopore/micropore volume fractions

• Determine optimal mesopore volume %
• Percent of total pore volume that is 

mesopores


